
7/27/18 1

Adaptive Linear Solvers and Eigensolvers

Jack Dongarra
University of Tennessee

Oak Ridge National Laboratory
University of Manchester

Copy of slides at http://bit.ly/atpesc-2018-dongarra

Dense Linear Algebra
• Common Operations

• A major source of large dense linear systems is problems involving the
solution of boundary integral equations.
• The price one pays for replacing three dimensions with two is that what started

as a sparse problem in O(n3) variables is replaced by a dense problem in O(n2).
• Dense systems of linear equations are found in numerous other applications,

including:
• airplane wing design;
• radar cross-section studies;
• flow around ships and other off-shore constructions;
• diffusion of solid bodies in a liquid;
• noise reduction; and
• diffusion of light through small particles.2

Ax = b; min
x

|| Ax − b ||; Ax = λx

7/27/18

Existing Math Software - Dense LA

http://www.netlib.org/utk/people/JackDongarra/la-sw.html

¨ LINPACK, EISPACK, LAPACK, ScaLAPACK
ØPLASMA, MAGMA 37/27/18

DLA Solvers

• We are interested in developing Dense Linear
Algebra Solvers

• Retool LAPACK and ScaLAPACK for multicore
and hybrid architectures

7/27/18
4

50 Years Evolving SW and Alg
Tracking Hardware Developments

Software/Algorithms follow hardware evolution in time
EISPACK (1970’s)
(Translation of Algol)

Rely on
- Fortran, but row oriented

LINPACK (1980’s)
(Vector operations

Rely on
- Level-1 BLAS operations
- Column oriented

LAPACK (1990’s)
(Blocking, cache friendly)

Rely on
- Level-3 BLAS operations

ScaLAPACK (2000’s)
(Distributed Memory)

Rely on
- PBLAS Mess Passing

PLASMA (2010’s)
New Algorithms
(many-core friendly)

Rely on
- DAG/scheduler
- block data layout
- some extra kernels

SLATE (2020’s) Rely on C++
- Tasking DAG scheduling
- Tiling, but tiles can come from anywhere
- Batched Dispatch

6

What do you mean by performance?
¨ What is a xflop/s?

Ø xflop/s is a rate of execution, some number of floating point operations per
second.
ØWhenever this term is used it will refer to 64 bit floating point operations and the

operations will be either addition or multiplication.
Ø Tflop/s refers to trillions (1012) of floating point operations per second and
Ø Pflop/s refers to 1015 floating point operations per second.

¨ What is the theoretical peak performance?
Ø The theoretical peak is based not on an actual performance from a benchmark

run, but on a paper computation to determine the theoretical peak rate of
execution of floating point operations for the machine.

Ø The theoretical peak performance is determined by counting the number of
floating-point additions and multiplications (in full precision) that can be
completed during a period of time, usually the cycle time of the machine.

Ø For example, an Intel Skylake processor at 2.1 GHz can complete 32 floating
point operations per cycle per core or a theoretical peak performance of 67.2
GFlop/s per core or 1.61 Tflop/s for the socket of 24 cores.

Peak Performance - Per Core
Floating point operations per cycle per core

Ø Most of the recent computers have FMA (Fused multiple add):
(i.e. x ←x + y*z in one cycle)

Ø Intel Xeon earlier models and AMD Opteron have SSE2
Ø 2 flops/cycle/core DP & 4 flops/cycle/core SP

Ø Intel Xeon Nehalem (2009) & Westmere (2010) have SSE4
Ø 4 flops/cycle/core DP & 8 flops/cycle/core SP

Ø Intel Xeon Sandy Bridge(2011) & Ivy Bridge (2012) have AVX
Ø 8 flops/cycle/core DP & 16 flops/cycle/core SP

Ø Intel Xeon Haswell (2013) & Broadwell (2014) AVX2
Ø 16 flops/cycle/core DP & 32 flops/cycle/core SP
Ø Xeon Phi (per core) is at 16 flops/cycle DP & 32 flops/cycle SP

Ø Intel Xeon Skylake (server) & KNL AVX 512
Ø 32 flops/cycle/core DP & 64 flops/cycle/core SP
Ø Skylake w/24 cores & Xeon Phi (Knight’s Landing) w/68 cores

Ø Intel Xeon Cascade Lake

We
are
here

CPU Access Latencies in Clock Cycles

In 167 cycles can do 2672 DP Flops

Cycles

Cycles

Memory	transfer
• One	level	of	memory	model	on	my	laptop:

25.6	GB/sec

Cache
(6	MB)

CPU

Main	memory
(16	GB)

The	model	IS	simplified	(see	next	slide)	but	it	provides	an	upper	bound	on	
performance	as	well.	I.e.,	we	will	never	go	faster	than	what	the	model	predicts.	(
And,	of	course,	we	can	go	slower	…)

(Omitting	latency	here.)

56	GFLOP/sec/core	x	2	cores
Intel	iCore7	4850HQ

Haswell
Cycle	time	=	2.3	GHz
Turbo	Boost	=	3.5	GHz
3.5	GHz*16	flops/cycle	=	

56	Gflop/s	per	core	

7/27/18 9

FMA:	fused	multiply-add
α +	AXPY:

y x y

DOT:
y xT yα

for (j	=	0;	j	<	n;	j++)
y[i]	+=	a	*	x[i];

(without increment)

alpha =	0e+00;
for (j	=	0;	j	<	n;	j++)

alpha +=	x[i]	*	y[i];

(without increment)

n	MUL
n	ADD
2n	FLOP
n	FMA

n	MUL
n	ADD
2n	FLOP
n	FMA

Note:	It	is	reasonable	to	expect	the	one	loop	codes	shown	here	to	perform	as	well	as	
their	Level	1	BLAS	counterpart	(on	multicore	with	an	OpenMP pragma	for	example).	

The	true	gain	these	days	with	using	the	BLAS	is	(1)	Level	3	BLAS,	and	(2)	portability.

• Take	two	double	precision	vectors	x	and	y	of	size	n=375,000.

• Data	size:	
– (375,000	double)	*	(8	Bytes	/	double)	=	3	MBytes per	vector
(Two	vectors	fit	in	cache	(6	MBytes).	OK.)	

• Time	to	move	the	vectors	from	memory	to	cache:
– (6	MBytes)	/	(25.6	GBytes/sec)	=	0.23	ms

• Time	to	perform	computation	of	DOT:
– (2n	flops)	/	(56	Gflop/sec)	=	0.013	ms

DOT:
y xT yα

Vector	Operations	

total_time ≥	max	(time_comm ,	time_comp)
=	max	(0.23ms	,	0.01ms)	=	0.23ms

Performance	=	(2	x	375,000	flops)/.23ms	=	3.2	Gflop/s

Performance	for	DOT	≤	3.2	Gflop/s
Peak	is	56	Gflop/s

We	say	that	the	operation	is	communication	
bounded.	No	reuse	of	data.

Level	1,	2	and	3	BLAS

Level	2	BLAS		Matrix-Vector	operations

Level	1	BLAS		Matrix-Vector	operations

Level	3	BLAS		Matrix-Matrix	operations

C A C
B

α +	β

α +	AXPY:
y x y

DOT:
y xT yα

α +	GEMV:
y x y

A

GEMM:

2n	FLOPs
2n	memory references
AXPY:	2n	READ,	n	WRITE
DOT:			2n	READ

RATIO	Fl	Pt	Ops	to	Memory	Ops: 1:1

2n2 FLOPs
n2 memory references

RATIO	Fl	Pt	Ops	to	Memory	Ops: 2:1

2n3 FLOPs
3n2 memory references
3n2	READ,	n2	WRITE

RATIO	Fl	Pt	Ops	to	Memory	Ops: n:2

• Double	precision	matrix	A	and	vectors	x	and	y	of	size	n=860.

• Data	size:	
– (8602 +	2*860	double)	*	(8	Bytes	/	double)	~	6	MBytes

Matrix	and	two	vectors	fit	in	cache	(6	MBytes).

• Time	to	move	the	data	from	memory	to	cache:
– (6	MBytes)	/	(25.6	GBytes/sec)	=	0.23	ms

• Time	to	perform	computation	of	GEMV:
– (2n2 flops)	/	(56	Gflop/sec)	=	0.026	ms

α" +""GEMV:"
y" x" y"

A"

Matrix	- Vector	Operations	

total_time ≥	max	(time_comm ,	time_comp)
=	max	(0.23ms	,	0.026ms)	=	0.23ms

Performance	=	(2	x	8602 flops)/.23ms	=	6.4	Gflop/s

Performance	for	GEMV	≤	6.4	Gflop/s

Peak	is	56	Gflop/s

We	say	that	the	operation	is	communication	
bounded.	Very	little	reuse	of	data.

Performance for DOT ≤ 3.2 Gflop/s

• Take	two	double	precision	vectors	x	and	y	of	size	n=500.

• Data	size:	
– (5002 double)	*	(8	Bytes	/	double)	=	2	MBytes per	matrix
(Three	matrices	fit	in	cache	(6	MBytes).	OK.)	

• Time	to	move	the	matrices	in	cache:
– (6	MBytes)	/	(25.6	GBytes/sec)	=	0.23	ms

• Time	to	perform	computation	in	GEMM:
– (2n3	flops)	/	(56	Gflop/sec)	=	4.5	ms

C CBA
α +	βGEMM:

Matrix	Matrix	Operations
total_time ≥	max	(time_comm ,	time_comp)

=	max(0.23ms	,	4.46ms)	=	4.46ms
For	this	example,	communication	time	is	less	than	6%	of	the	computation	time.	

Performance	=	(2	x	500	3 flops)/4.5ms	=	55.5	Gflop/s
There	is	a	lots	of	data	reuse	in	a	GEMM;	2/3n	per	data	element.	Has	good	
temporal	locality.

If	we	assume	total_time ≈	time_comm +time_comp,	we	get	
Performance	for	GEMM	≈	55.5	Gflop/sec

Performance	for	DOT	≤	3.2	Gflop/s
Performance	for	GEMV	≤	6.4	Gflop/s

(Out	of	56	Gflop/sec	possible,	so	that	would	be	99%	peak	performance	efficiency.)

18

0

10

20

30

40

50

60

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Pe
rf
or
m
an

ce
	G
FL
O
P/
s

Matrix	(Vector)	Size	N	

dgemm	Level-3	BLAS
dgemv	Level-2	BLAS
daxpy	Level-1	BLAS

Level 1, 2 and 3 BLAS
1 core Intel Haswell i7-4850HQ, 2.3 GHz (Turbo Boost at 3.5 GHz);

Peak = 56 Gflop/s

1 core Intel Haswell i7-4850HQ, 2.3 GHz, Memory: DDR3L-1600MHz
6 MB shared L3 cache, and each core has a private 256 KB L2 and 64 KB L1.
The theoretical peak per core double precision is 56 Gflop/s per core.
Compiled with gcc and using Veclib

1.6 Gflop/s
3.4 Gflop/s

54 Gflop/s

Issues	

• Reuse	based	on	matrices	that	fit	into	cache.
• What	if	you	have	matrices	bigger	than	cache?

• Break	matrices	into	blocks	or	tiles	that	will	fit.

7/27/18 19

Issues	

• Reuse	based	on	matrices	that	fit	into	cache.
• What	if	you	have	matrices	bigger	than	cache?

• Break	matrices	into	blocks	or	tiles	that	will	fit.

7/27/18 20

LU Factorization in LINPACK (1970’s)

• Factor	one	column	at	a	time
– i_amax	and	_scal

• Update	each	column	of	trailing	matrix,	one	column	at	a	time
– _axpy

• Level	1	BLAS
• Bulk	synchronous

– Single	main	thread
– Parallel	work	in	BLAS
– “Fork-and-join”	model21

• Factor	panel	of	nb columns
– getf2,	unblocked	BLAS-2	code

• Level	3	BLAS	update	block-row	of	U
– trsm

• Level	3	BLAS	update	trailing	matrix
– gemm
– Aimed	at	machines	with	cache	hierarchy

• Bulk	synchronous
22

The Standard LU Factorization LAPACK
1980’s HPC of the Day: Cache Based SMP

Parallelism in LAPACK
¨ Most flops in gemm update

23

• 2/3 n3 term
• Easily parallelized using

multi-threaded BLAS
• Done in any reasonable software

• Other operations lower order
• Potentially expensive if not parallelized

Last Generations of DLA Software

MAGMA
Hybrid Algorithms
(heterogeneity friendly)

Rely on
- hybrid scheduler
- hybrid kernels

Software/Algorithms follow hardware evolution in time
LINPACK (70’s)
(Vector operations)

Rely on
- Level-1 BLAS

operations

LAPACK (80’s)
(Blocking, cache
friendly)

Rely on
- Level-3 BLAS

operations

ScaLAPACK (90’s)
(Distributed Memory)

Rely on
- PBLAS Mess Passing

PLASMA
New Algorithms
(many-core friendly)

Rely on
- a DAG/scheduler
- block data layout
- some extra kernels

7/27/18
24

ScaLAPACK
Scalable	Linear	Algebra	PACKage

• Distributed	memory
• Message	Passing

– Clusters	of	SMPs
– Supercomputers

• Dense	linear	algebra
• Modules

– PBLAS:	Parallel	BLAS
– BLACS:	Basic	Linear	Algebra	Communication	Subprograms
25

PBLAS
• Similar	to	BLAS	in	functionality	and	naming
• Built	on	BLAS	and	BLACS
• Provide	global	view	of	matrix

• LAPACK: dge___(m, n, A(ia, ja), lda, ...)
– Submatrix	offsets	implicit	in	pointer

• ScaLAPACK: pdge___(m, n, A, ia, ja, descA, ...)
– Pass	submatrix	offsets	and	matrix	descriptor

26

ScaLAPACK	structure

27

ScaLAPACK

PBLAS

LAPACK

BLAS BLACS

MPI

Global addressing

Local addressing

Platform independent

Platform specific

ScaLAPACK	routine,	solve	AX = B
• LAPACK: dgesv(n, nrhs, A, lda, ipiv, B, ldb, info)

• ScaLAPACK: pdgesv(n, nrhs, A, ia, ja, descA, ipiv, B, ib, jb, descB, info)

• input:

• output:

28

info (error code)
= 0: no error
< 0: invalid argument
> 0: numerical error

(e.g., singular)

L, U overwrite A
X overwrites B

Global matrix
point of view

implicit unit diagonal

2D	block-cyclic	layout

29

m × n matrix
p × q process grid

Global matrix view Local process point of view

2D	block-cyclic	layout

30

m × n matrix
p × q process grid

Global matrix view Local process point of view

2D	block-cyclic	layout

31

m × n matrix
p × q process grid

Global matrix view Local process point of view

2D	block-cyclic	layout

32

m × n matrix
p × q process grid

Global matrix view Local process point of view

Parallelism	in	ScaLAPACK
• Similar	to	LAPACK
• Bulk-synchronous
• Most	flops	in	gemm	update

– 2/3	n3 term
– Can	use	sequential	BLAS,
p	x	q	=	#	cores

=	#	MPI	processes,
num_threads	=	1

– Or	multi-threaded	BLAS,
p	x	q	=	#	nodes

=	#	MPI	processes,
num_threads	=	#	cores/node33

C
or

es

Time

Synchronization (in LAPACK)

•  Fork-join, bulk synchronous processing 27

�
�	��� �
�	��� �
�	��� �
�	��� ������

23

���	�������������

���	����
�������

�������
�������

���
���������������

�����
������
�����

Ø fork join
Ø bulk synchronous processing

34

• Objectives
• High utilization of each core
• Scaling to large number of cores
• Synchronization reducing algorithms

• Methodology
• Dynamic DAG scheduling
• Explicit parallelism
• Implicit communication
• Fine granularity / block data layout

• Arbitrary DAG with dynamic scheduling

35

Fork-join parallelism
Notice the synchronization
penalty in the presence of
heterogeneity.

Dataflow Based Design

DAG scheduled
parallelismC

or
es

Time

Tile matrix layout

• Tiled layout
• Each tile is contiguous (column major)
• Enables dataflow scheduling
• Cache and TLB efficient (reduces conflict misses and false sharing)
• MPI messaging efficiency (zero-copy communication)
• In-place, parallel layout translation

36

LAPACK column major (D)PLASMA tile layout

Tile algorithms: Cholesky

37

LAPACK Algorithm (right looking) Tile Algorithm

Track dependencies — Directed acyclic graph (DAG)

38

Fork-join schedule on 4 cores
with artificial synchronizations

Reorder without
synchronizations

synchronize

Critical path

Execution trace
• LAPACK-style fork-join leave cores idle

39

panels

24 cores
Matrix is 8000 x 8000, tile size is 400 x 400.

time

Execution trace
• PLASMA squeezes out idle time

40

24 cores
Matrix is 8000 x 8000, tile size is 400 x 400.

panels time

Execution trace
• PLASMA squeezes out idle time

41

24 cores
Matrix is 8000 x 8000, tile size is 400 x 400.

time

PLASMA Factorization
Dataflow Driven

xTRSM

xGEMM

xGEMM

xGETF2

xTRSM

xTRSM

xTRSM

xGEMM
xGEMM

xGEMM

xGEMM xGEMM
xGEMM

xGEMM

xGEMM xGEMM

Numerical program generates tasks and
run time system executes tasks respecting
data dependences.

7/27/18
42

OpenMP tasking

• Added with OpenMP 3.0 (2009)
• Allows parallelization of irregular problems
• OpenMP 4.0 (2013) - Tasks can have

dependencies
• DAGs

43

Tiled Cholesky Decomposition

44

PLASMA_[scdz]potrf[_Tile][_Async]()

l Algorithm
l equivalent to LAPACK

l Numerics

l same as LAPACK

l Performance

l comparable to vendor on few cores

l much better than vendor on many cores

Algorithms
Cholesky

0 2000 4000 6000 8000 10000 12000

0

50

100

150

200

250

Cholesky Performance (double prec.)

AMD Istanbul, 2.8 GHz, 8 sockets (48 cores)

Size

G
fl
o
p
/s

PLASMA

MKL

LAPACK

7/27/18 45

PLASMA – Inverse of the Variance-Covariance Matrix

Cholesky inversion using OpenMP
tiles of size 288 x 288, (7200 x 7200)

Factor matrix A = LLT Compute inverse of factor L Computer A-1 = L-TL-1

Intel Xeon Phi, Knights Landing, 68 cores, 1.3 GHz

sync:
770 Gflop/s

Assume a t by t matrix
tiling then Cholesky
Factorization alone: 3t-2
Total: 25(7t-3)

Cholesky inversion using OpenMP
tiles of size 288 x 288, (7200 x 7200)

Factor matrix A = LLT Compute inverse of factor L Computer A-1 = L-TL-1

Intel Xeon Phi, Knights Landing, 68 cores, 1.3 GHz

sync:
770 Gflop/s

async:
1001 Gflop/s

Assume a t by t matrix
tiling then Cholesky
Factorization alone: 3t-2
Total: 25(7t-3)

Total: 18(3t+6)

PLASMA – Inverse of the Variance-Covariance Matrix

Emerging	software	solutions

48

• PLASMA
• Tile layout & algorithms
• Dynamic scheduling — OpenMP 4

• DPLASMA — PaRSEC
• Distributed
• Tile layout & algorithms
• Dynamic scheduling — parameterized task graph

• MAGMA
• Hybrid multicore + accelerator (GPU, Xeon Phi)
• Block algorithms (LAPACK style)
• Standard layout/Static scheduling

2009 2011 2014

• SLATE – DOE ECP Project
• DPLAMA Hybrid
• C++
• Update to state-pf-the-art algorithms

2017

API for Batching BLAS Operations

• We are proposing, as a community standard, an API for
Batched Basic Linear Algebra Operations

• The focus is on multiple independent BLAS operations
• Think “small” matrices (n<500) that are operated on in a single

routine.
• Goal to be more efficient and portable for

multi/manycore & accelerator systems.
• We can show 2x speedup and 3x better energy

efficiency.

49 / 57

18 cores Intel Xeon Gold 6140, 2.3 GHz (Skylake)
The theoretical peak double precision is 1325 Gflop/s
Compiled with icc and using Intel MKL 2018

Level 1, 2 and 3 BLAS
18 cores Intel Xeon Gold 6140 (Skylake), 2.3 GHz, Peak DP = 1325 Gflop/s

2k 4k 6k 8k 10k 12k 14k 16k 18k 20k
Matrix size (N), vector size (NxN)

0

200

400

600

800

1000

1200

Gf
lo

p/
s

dgemm BLAS Level 3
dgemv BLAS Level 2
daxpy BLAS Level 1

25 Gflop/s

8 Gflop/s

1050 Gflop/s

42x

C = C + A*B

y = y + A*x

y = �*x + y
Memory bound

Compute bound

Machine Learning in Computational Science

• Climate
• Biology
• Drug Design
• Epidemology
• Materials
• Cosmology
• High-Energy Physics

Many fields are beginning to adopt machine learning to augment modeling and simulation
methods

Deep Learning Needs Small Matrix Operations
Matrix Multiply is the time consuming part.

Convolution Layers and Fully Connected Layers require matrix multiply

There are many GEMM’s of small matrices, perfectly parallel, can get by with 16-bit floating point

52 / 47

Convolution Step
In this case 3x3 GEMM

x1

x2

x3

x1 y1

y2

w11

w12

w13

w21

w22

w23

Fully Connected
Classification

1 119 233 348 464 589 707 837 950

1

119

233

348

464

589

707

837

950

nz = 6716

Examples
Need of Batched routines for Numerical LA

[e.g., sparse direct multifrontal methods, preconditioners for sparse iterative methods, tiled algorithms in dense linear algebra, etc.;]
[collaboration with Tim Davis at al., Texas A&M University]

� LU, QR, or Cholesky
on small diagonal matrices

Sparse / Dense Matrix
System

� TRSMs, QRs, or LUs

� TRSMs, TRMMs

� Updates (Schur complement)
GEMMs, SYRKs, TRMMs

DAG-based factorization
To capture main LA patterns needed in a

numerical library for Batched LA

• Example matrix from Quantum chromodynamics
• Reordered and ready for sparse direct multifrontal solver

• Diagonal blocks can be handled in parallel through batched
LU, QR, or Cholesky factorizations

• Define standard API for batched BLAS and LAPACK in
collaboration with Intel/Nvidia/ECP/other users

• Fixed size most of BLAS and LAPACK released
• Variable size most of BLAS released
• Variable size LAPACK in the branch
• Native GPU algorithms (Cholesky, LU, QR) in the branch
• Tiled algorithm using batched routines on tile or LAPACK

data layout in the branch

• Framework for Deep Neural Network kernels
• CPU, KNL and GPU routines
• FP16 routines in progress

Standard for Batched Computations

Batched Computations

1. Non-batched computation
• loop over the matrices one by one and compute using multithread (note that, since

matrices are of small sizes there is not enough work for all the cores). So we expect low
performance as well as threads contention might also affect the performance

for (i=0; i<batchcount; i++)
dgemm(…)

There is not enough work
to fulfill all the cores.

Low	percentage	of	the	
resources	is	used

Batched Computations

1. Batched computation
Distribute all the matrices over the available resources by assigning a matrix to each
group of core/TB to operate on it independently

• For very small matrices, assign a matrix/core (CPU) or per TB for GPU
• For medium size a matrix go to a team of cores (CPU) or many TB’s (GPU)
• For large size switch to multithreads classical 1 matrix per round.

Batched_dgemm(…)

Based on the kernel
design that decide the
number of TB or threads
(GPU/CPU)
and through the
Nvidia/OpenMP
scheduler

Tasks manager
dispatcher

High	percentage	of	the	
resources	is	used

Batched Computations: How do we design and optimize

50~1000 matrices of size
64 256 512 1000 1800 2200 2500 3000

G
flo

p/
s

0

200

400

600

800

1000

1200

1400

1600

1800

2000
68 cores Intel Xeon Phi KNL 7250, 1.3 GHz. DP peak is 2662 Gflop/s compiled with icc and using Intel MKL 2017

Batched dgemm BLAS 3
Standard dgemm BLAS 3

2~3x

C = C + A*B

100X

Switch to non-batched

Small
sizes

medium
sizes

large
sizes

Batched Computations: How do we design and optimize

50~1000 matrices of size
64 256 512 1000 1500 2000 2,500 3,000 3500 4000

G
flo

p/
s

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
Nvidia P100

Batched dgemm BLAS 3
Standard dgemm BLAS 3

1.2x

C = C + A*B

30X

Switch to non-batched

Small
sizes

medium
sizes

large
sizes

IEEE 754 Half Precision (16-bit) Floating Pt Standard
A lot of interest driven by “machine learning”

FP16

FP16

Google TPU different then IEEE
bfloat16
1 bit for the sign,
8 bits for the exponent (same as SP)
7 bits for the mantissa

Mixed Precision
• Today many precisions to deal with

• Note the number range with half precision
(16 bit fl.pt.)

7/27/18
60

Nvidia Volta peak rates

• 64 bit floating point (FMA): 7.5 Tflop/s
• 32 bit floating point (FMA): 15 Tflop/s
• 16 bit floating point (FMA): 30 Tflop/s
• 16 bit floating point with Tensor core: 120 Tflop/s

07
61

Mixed Precision Matrix Multiply
4x4 Matrices

07
62

Leveraging Half Precision in HPC on V100

matrix size
2k 4k 6k 8k 10k12k14k16k18k20k22k24k26k28k30k

Tf
lo

p/
s

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

FP64 GEMM

Matrix matrix multiplication GEMM

• dgemm achieve about 6.4 Tflop/s

Study of the Matrix Matrix multiplication kernel on Nvidia V100

Leveraging Half Precision in HPC on V100

matrix size
2k 4k 6k 8k 10k12k14k16k18k20k22k24k26k28k30k

Tf
lo

p/
s

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

FP32 GEMM
FP64 GEMM

Matrix matrix multiplication GEMM

• dgemm achieve about 6.4 Tflop/s
• sgemm achieve about 14 Tflop/s

Study of the Matrix Matrix multiplication kernel on Nvidia V100

~2X

Leveraging Half Precision in HPC on V100

Matrix matrix multiplication GEMM

• dgemm achieve about 6.4 Tflop/s
• sgemm achieve about 14 Tflop/s
• hgemm achieve about 27 Tflop/s

matrix size
2k 4k 6k 8k 10k12k14k16k18k20k22k24k26k28k30k

Tf
lo

p/
s

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

FP16 GEMM
FP32 GEMM
FP64 GEMM

Study of the Matrix Matrix multiplication kernel on Nvidia V100

~4X

Leveraging Half Precision in HPC on V100

Matrix matrix multiplication GEMM

• dgemm achieve about 6.4 Tflop/s
• sgemm achieve about 14 Tflop/s
• hgemm achieve about 27 Tflop/s
• Tensor cores gemm reach about 85 Tflop/s

matrix size
2k 4k 6k 8k 10k12k14k16k18k20k22k24k26k28k30k

Tf
lo

p/
s

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

FP16 GEMM Tensor Cores
FP16 GEMM
FP32 GEMM
FP64 GEMM

Study of the Matrix Matrix multiplication kernel on Nvidia V100

~12X

Leveraging Half Precision in HPC on V100

Matrix matrix multiplication GEMM

• dgemm achieve about 6.4 Tflop/s
• sgemm achieve about 14 Tflop/s
• hgemm achieve about 27 Tflop/s
• Tensor cores gemm reach about 85 Tflop/s

matrix size
2k 4k 6k 8k 10k12k14k16k18k20k22k24k26k28k30k

Tf
lo

p/
s

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

FP16 GEMM Tensor Cores
FP16 GEMM
FP32 GEMM
FP64 GEMM

Study of the Matrix Matrix multiplication kernel on Nvidia V100

Leveraging Half Precision in HPC on V100

• In LU factorization need matrix
multiple but operations is a
rank-k update computing the
Schur complement

m=n
2k 4k 6k 8k 10k12k14k16k18k20k22k24k26k28k30k

Tf
lo

p/
s

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

FP16 TC square
FP16 TC k=256

FP16 square
FP16 k=256

FP32 square
FP32 k=256

FP64 square
FP64 k=256

Study of the rank k update used by the LU factorization algorithm on Nvidia V100

Leveraging Half Precision in HPC on V100

• LU factorization is used to solve a
linear system Ax=b

A x = b

LUx = b

Ly = b

then
Ux = y

A x b

UL x b

L y b

U x y
matrix size

2k 4k 6k 8k 10k12k14k16k18k20k22k24k26k28k30k

Tf
lo

p/
s

0

4

8

12

16

20

24 FP16 hgetrf LU factorization Tensor Cores
FP16 hgetrf LU factorization
FP32 sgetrf LU factorization
FP64 dgetrf LU factorization

Study of the LU factorization algorithm on Nvidia V100

Leveraging half precision for HPC
Mixed Precision Methods

• Mixed precision, use the lowest precision
required to achieve a given accuracy
outcome

– Improves runtime, reduce power
consumption, lower data movement

– Reformulate to find correction to solution,
rather than solution; Δx rather than x.

Use Mixed Precision algorithms
ØAchieve higher performance à faster time to solution
ØReduce power consumption reduce power consumption by decreasing the

execution time à Energy Savings !!!

Leveraging Half Precision in HPC on V100

Reference:
A. Haidar, P. Wu, S. Tomov, J. Dongarra,
Investigating Half Precision Arithmetic to Accelerate Dense Linear System Solvers,
SC-17, ScalA17: 8th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems, ACM, Denver, Colorado, November 12-17, 2017.

Iterative refinement for dense systems, Ax = b, can work this way.
L U = lu(A) lower precision O(n3)
x = U\(L\b) lower precision O(n2)
r = b – Ax FP64 precision O(n2)

WHILE || r || not small enough
1. find a correction “z” to adjust x that satisfy Az=r

solving Az=r could be done by either:
Ø z = U\(L\r) Classical Iterative Refinement lower precision O(n2)
Ø GMRes preconditioned by the LU to solve Az=r Iterative Refinement using GMRes lower precision O(n2)

2. x = x + z FP64 precision O(n1)
3. r = b – Ax FP64 precision O(n2)

END

Idea: use low precision to compute the expensive flops (LU O(n3)) and then iteratively
refine the solution in order to achieve the FP64 arithmetic

Ø Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt results when using DP fl pt.
Ø It can be shown that using this approach we can compute the solution to 64-bit floating point precision.
Ø Need the original matrix to compute residual (r) and matrix cannot be too badly conditioned

Leveraging Half Precision in HPC on V100

Higham and Carson showed can solve the inner problem with iterative method and not infect the solution.

Leveraging Half Precision in HPC on V100

Factorization and Inversion of a Million Matrices on GPUs Abdelfattah, Haidar, Tomov and Dongarra

The reason is that such software is optimized to handle large sizes of data with embarrassingly
parallel computational kernels such as matrix multiplication (GEMM). In dense linear algebra,
the idea of blocking enables the use of compute-intensive trailing matrix updates that are well-
suited for GPUs [19]. However, when the sizes are very small, the LAPACK-style blocking cannot
be applied, since the blocking sizes will be very small, leading to memory-bound trailing matrix
updates. We need a di↵erent design mindset in order to develop high performance GPU kernels
to handle such type of workloads.

This paper presents highly optimized GPU kernels for batched LU factorization and matrix
inversion. The kernels can handle millions of matrices of sizes up to 32. We show a step-by-
step methodology, where incremental improvements in the kernel design lead to incremental
performance gains. We justify all of our design choices by showing the performance before
and after every incremental improvement. One of the main advantages of our design is the
elimination of the expensive intermediate row interchanges by delaying them to the end of the
kernel, which leads to a much faster kernel that produces the exact same result of a LAPACK-style
LU-factorization and inversion. The performance results show significant speedups against the
vendor-supplied CUBLAS kernels using a Pascal P100 GPU.

2 ddd

Matrix of size 10240 generated with positive � and arithmetic distribution of its singular values
�i = 1� (i�1

n�1)(1�
1

cond) and where its condition number is equal to 102.

3 Related Work

GPUs are well suited for embarrassingly parallel tasks on large chunks of data, such as matrix
multiplication(GEMM) [13][18]. The nearly optimal performance of GEMM on GPUs allowed the
development of high performance LAPACK algorithms [19][11]. Following a growing interest in
performing matrix computations on large batches of small matrices, an obvious start was to
develop a batched GEMM routine for GPUs. This has already been addressed in literature [7][4],
leading to developments of higher-level batched LAPACK algorithms. For example, Kurzak et
al. [12] introduced batched Cholesky factorization for single precision up to sizes 100 ⇥ 100,
while Dong et al. provided a more generic design [9]. Some contributions also proved the
ability of GPUs to deal with variable size batched workloads [4][3].

Wang et al. [20] introduced FPGA-based parallel LU factorization of large sparse matrices,
where the algorithm is reduced to factorizing many small matrices concurrently. Villa et al. [16]
developed a GPU-based batched LU factorization, which has been used in subsurface transport
simulation, where many chemical and microbiological reactions in a flow path are simulated in
parallel [17]. Batched matrix inversion is also introduced in the context of generating block-
Jacobi preconditioners [6]. The work presented by Haidar et al. [10] provides a batched LU

2

iterations
0 1 2 3 4 5 6 7 8

re
si

du
al

10-20

10-15

10-10

10-5

100

Convergence history for Iterative Refinement using GMRes
FP32->64 IRGM
FP16->64 IRGM
FP16->64 IRGM (Tensor Cores)

iterations
0 1 2 3 4 5 6 7 8

re
si

du
al

10-20

10-15

10-10

10-5

100

Convergence history for Classic Iterative Refinement
FP32->64 IR
FP16->64 IR
FP16->64 IR (Tensor Cores)

Leveraging Half Precision in HPC on V100

Matrix size
2k 4k 6k 8k10k12k14k16k18k 22k 26k 30k 34k

Tf
lo

p/
s

0
2
4
6
8

10
12
14
16
18
20
22
24

Performance of solving Ax=b
using FP64 or IR with GMRes to achieve FP64 accuracy

FP64 dgesv

• solving Ax = b using FP64 LU

Flops = 2n3/(3 time)
meaning twice higher is twice faster

Factorization and Inversion of a Million Matrices on GPUs Abdelfattah, Haidar, Tomov and Dongarra

The reason is that such software is optimized to handle large sizes of data with embarrassingly
parallel computational kernels such as matrix multiplication (GEMM). In dense linear algebra,
the idea of blocking enables the use of compute-intensive trailing matrix updates that are well-
suited for GPUs [19]. However, when the sizes are very small, the LAPACK-style blocking cannot
be applied, since the blocking sizes will be very small, leading to memory-bound trailing matrix
updates. We need a di↵erent design mindset in order to develop high performance GPU kernels
to handle such type of workloads.

This paper presents highly optimized GPU kernels for batched LU factorization and matrix
inversion. The kernels can handle millions of matrices of sizes up to 32. We show a step-by-
step methodology, where incremental improvements in the kernel design lead to incremental
performance gains. We justify all of our design choices by showing the performance before
and after every incremental improvement. One of the main advantages of our design is the
elimination of the expensive intermediate row interchanges by delaying them to the end of the
kernel, which leads to a much faster kernel that produces the exact same result of a LAPACK-style
LU-factorization and inversion. The performance results show significant speedups against the
vendor-supplied CUBLAS kernels using a Pascal P100 GPU.

2 ddd

Matrices generated with positive � and arithmetic distribution of its singular values
�i = 1� (i�1

n�1)(1�
1

cond) and where its condition number is equal to 102.

3 Related Work

GPUs are well suited for embarrassingly parallel tasks on large chunks of data, such as matrix
multiplication(GEMM) [13][18]. The nearly optimal performance of GEMM on GPUs allowed the
development of high performance LAPACK algorithms [19][11]. Following a growing interest in
performing matrix computations on large batches of small matrices, an obvious start was to
develop a batched GEMM routine for GPUs. This has already been addressed in literature [7][4],
leading to developments of higher-level batched LAPACK algorithms. For example, Kurzak et
al. [12] introduced batched Cholesky factorization for single precision up to sizes 100 ⇥ 100,
while Dong et al. provided a more generic design [9]. Some contributions also proved the
ability of GPUs to deal with variable size batched workloads [4][3].

Wang et al. [20] introduced FPGA-based parallel LU factorization of large sparse matrices,
where the algorithm is reduced to factorizing many small matrices concurrently. Villa et al. [16]
developed a GPU-based batched LU factorization, which has been used in subsurface transport
simulation, where many chemical and microbiological reactions in a flow path are simulated in
parallel [17]. Batched matrix inversion is also introduced in the context of generating block-
Jacobi preconditioners [6]. The work presented by Haidar et al. [10] provides a batched LU

2

Leveraging Half Precision in HPC on V100

Matrix size
2k 4k 6k 8k10k12k14k16k18k 22k 26k 30k 34k

Tf
lo

p/
s

0
2
4
6
8

10
12
14
16
18
20
22
24

Performance of solving Ax=b
using FP64 or IR with GMRes to achieve FP64 accuracy

FP64 dgesv
FP32->64 dsgesv

• solving Ax = b using FP64 LU
• solving Ax = b using FP32 LU and

iterative refinement to achieve FP64
accuracy

Flops = 2n3/(3 time)
meaning twice higher is twice faster

Factorization and Inversion of a Million Matrices on GPUs Abdelfattah, Haidar, Tomov and Dongarra

The reason is that such software is optimized to handle large sizes of data with embarrassingly
parallel computational kernels such as matrix multiplication (GEMM). In dense linear algebra,
the idea of blocking enables the use of compute-intensive trailing matrix updates that are well-
suited for GPUs [19]. However, when the sizes are very small, the LAPACK-style blocking cannot
be applied, since the blocking sizes will be very small, leading to memory-bound trailing matrix
updates. We need a di↵erent design mindset in order to develop high performance GPU kernels
to handle such type of workloads.

This paper presents highly optimized GPU kernels for batched LU factorization and matrix
inversion. The kernels can handle millions of matrices of sizes up to 32. We show a step-by-
step methodology, where incremental improvements in the kernel design lead to incremental
performance gains. We justify all of our design choices by showing the performance before
and after every incremental improvement. One of the main advantages of our design is the
elimination of the expensive intermediate row interchanges by delaying them to the end of the
kernel, which leads to a much faster kernel that produces the exact same result of a LAPACK-style
LU-factorization and inversion. The performance results show significant speedups against the
vendor-supplied CUBLAS kernels using a Pascal P100 GPU.

2 ddd

Matrices generated with positive � and arithmetic distribution of its singular values
�i = 1� (i�1

n�1)(1�
1

cond) and where its condition number is equal to 102.

3 Related Work

GPUs are well suited for embarrassingly parallel tasks on large chunks of data, such as matrix
multiplication(GEMM) [13][18]. The nearly optimal performance of GEMM on GPUs allowed the
development of high performance LAPACK algorithms [19][11]. Following a growing interest in
performing matrix computations on large batches of small matrices, an obvious start was to
develop a batched GEMM routine for GPUs. This has already been addressed in literature [7][4],
leading to developments of higher-level batched LAPACK algorithms. For example, Kurzak et
al. [12] introduced batched Cholesky factorization for single precision up to sizes 100 ⇥ 100,
while Dong et al. provided a more generic design [9]. Some contributions also proved the
ability of GPUs to deal with variable size batched workloads [4][3].

Wang et al. [20] introduced FPGA-based parallel LU factorization of large sparse matrices,
where the algorithm is reduced to factorizing many small matrices concurrently. Villa et al. [16]
developed a GPU-based batched LU factorization, which has been used in subsurface transport
simulation, where many chemical and microbiological reactions in a flow path are simulated in
parallel [17]. Batched matrix inversion is also introduced in the context of generating block-
Jacobi preconditioners [6]. The work presented by Haidar et al. [10] provides a batched LU

2

Leveraging Half Precision in HPC on V100

Matrix size
2k 4k 6k 8k10k12k14k16k18k 22k 26k 30k 34k

Tf
lo

p/
s

0
2
4
6
8

10
12
14
16
18
20
22
24

Performance of solving Ax=b
using FP64 or IR with GMRes to achieve FP64 accuracy

FP64 dgesv
FP32->64 dsgesv
FP16->64 dhsgesv

• solving Ax = b using FP64 LU
• solving Ax = b using FP32 LU and

iterative refinement to achieve FP64
accuracy

• solving Ax = b using FP16 LU and
iterative refinement to achieve FP64
accuracy

Flops = 2n3/(3 time)
meaning twice higher is twice faster

Factorization and Inversion of a Million Matrices on GPUs Abdelfattah, Haidar, Tomov and Dongarra

The reason is that such software is optimized to handle large sizes of data with embarrassingly
parallel computational kernels such as matrix multiplication (GEMM). In dense linear algebra,
the idea of blocking enables the use of compute-intensive trailing matrix updates that are well-
suited for GPUs [19]. However, when the sizes are very small, the LAPACK-style blocking cannot
be applied, since the blocking sizes will be very small, leading to memory-bound trailing matrix
updates. We need a di↵erent design mindset in order to develop high performance GPU kernels
to handle such type of workloads.

This paper presents highly optimized GPU kernels for batched LU factorization and matrix
inversion. The kernels can handle millions of matrices of sizes up to 32. We show a step-by-
step methodology, where incremental improvements in the kernel design lead to incremental
performance gains. We justify all of our design choices by showing the performance before
and after every incremental improvement. One of the main advantages of our design is the
elimination of the expensive intermediate row interchanges by delaying them to the end of the
kernel, which leads to a much faster kernel that produces the exact same result of a LAPACK-style
LU-factorization and inversion. The performance results show significant speedups against the
vendor-supplied CUBLAS kernels using a Pascal P100 GPU.

2 ddd

Matrices generated with positive � and arithmetic distribution of its singular values
�i = 1� (i�1

n�1)(1�
1

cond) and where its condition number is equal to 102.

3 Related Work

GPUs are well suited for embarrassingly parallel tasks on large chunks of data, such as matrix
multiplication(GEMM) [13][18]. The nearly optimal performance of GEMM on GPUs allowed the
development of high performance LAPACK algorithms [19][11]. Following a growing interest in
performing matrix computations on large batches of small matrices, an obvious start was to
develop a batched GEMM routine for GPUs. This has already been addressed in literature [7][4],
leading to developments of higher-level batched LAPACK algorithms. For example, Kurzak et
al. [12] introduced batched Cholesky factorization for single precision up to sizes 100 ⇥ 100,
while Dong et al. provided a more generic design [9]. Some contributions also proved the
ability of GPUs to deal with variable size batched workloads [4][3].

Wang et al. [20] introduced FPGA-based parallel LU factorization of large sparse matrices,
where the algorithm is reduced to factorizing many small matrices concurrently. Villa et al. [16]
developed a GPU-based batched LU factorization, which has been used in subsurface transport
simulation, where many chemical and microbiological reactions in a flow path are simulated in
parallel [17]. Batched matrix inversion is also introduced in the context of generating block-
Jacobi preconditioners [6]. The work presented by Haidar et al. [10] provides a batched LU

2

Leveraging Half Precision in HPC on V100

Matrix size
2k 4k 6k 8k10k12k14k16k18k 22k 26k 30k 34k

Tf
lo

p/
s

0
2
4
6
8

10
12
14
16
18
20
22
24

Performance of solving Ax=b
using FP64 or IR with GMRes to achieve FP64 accuracy

FP64 dgesv
FP32->64 dsgesv
FP16->64 dhsgesv
FP16->64 dshtgesv

• solving Ax = b using FP64 LU
• solving Ax = b using FP32 LU and

iterative refinement to achieve FP64
accuracy

• solving Ax = b using FP16 LU and
iterative refinement to achieve FP64
accuracy

• solving Ax = b using FP16 Tensor Cores
LU and iterative refinement to achieve
FP64 accuracy

Flops = 2n3/(3 time)
meaning twice higher is twice faster

Factorization and Inversion of a Million Matrices on GPUs Abdelfattah, Haidar, Tomov and Dongarra

The reason is that such software is optimized to handle large sizes of data with embarrassingly
parallel computational kernels such as matrix multiplication (GEMM). In dense linear algebra,
the idea of blocking enables the use of compute-intensive trailing matrix updates that are well-
suited for GPUs [19]. However, when the sizes are very small, the LAPACK-style blocking cannot
be applied, since the blocking sizes will be very small, leading to memory-bound trailing matrix
updates. We need a di↵erent design mindset in order to develop high performance GPU kernels
to handle such type of workloads.

This paper presents highly optimized GPU kernels for batched LU factorization and matrix
inversion. The kernels can handle millions of matrices of sizes up to 32. We show a step-by-
step methodology, where incremental improvements in the kernel design lead to incremental
performance gains. We justify all of our design choices by showing the performance before
and after every incremental improvement. One of the main advantages of our design is the
elimination of the expensive intermediate row interchanges by delaying them to the end of the
kernel, which leads to a much faster kernel that produces the exact same result of a LAPACK-style
LU-factorization and inversion. The performance results show significant speedups against the
vendor-supplied CUBLAS kernels using a Pascal P100 GPU.

2 ddd

Matrices generated with positive � and arithmetic distribution of its singular values
�i = 1� (i�1

n�1)(1�
1

cond) and where its condition number is equal to 102.

3 Related Work

GPUs are well suited for embarrassingly parallel tasks on large chunks of data, such as matrix
multiplication(GEMM) [13][18]. The nearly optimal performance of GEMM on GPUs allowed the
development of high performance LAPACK algorithms [19][11]. Following a growing interest in
performing matrix computations on large batches of small matrices, an obvious start was to
develop a batched GEMM routine for GPUs. This has already been addressed in literature [7][4],
leading to developments of higher-level batched LAPACK algorithms. For example, Kurzak et
al. [12] introduced batched Cholesky factorization for single precision up to sizes 100 ⇥ 100,
while Dong et al. provided a more generic design [9]. Some contributions also proved the
ability of GPUs to deal with variable size batched workloads [4][3].

Wang et al. [20] introduced FPGA-based parallel LU factorization of large sparse matrices,
where the algorithm is reduced to factorizing many small matrices concurrently. Villa et al. [16]
developed a GPU-based batched LU factorization, which has been used in subsurface transport
simulation, where many chemical and microbiological reactions in a flow path are simulated in
parallel [17]. Batched matrix inversion is also introduced in the context of generating block-
Jacobi preconditioners [6]. The work presented by Haidar et al. [10] provides a batched LU

2

4X

Showing Tflop/s but really time to solution

Leveraging Half Precision in HPC on V100

iterations
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

re
si

du
al

10-20

10-15

10-10

10-5

100

Convergence history for Iterative Refinement using GMRes
FP32->64 IRGM
FP16->64 IRGM
FP16->64 IRGM (Tensor Cores)

Factorization and Inversion of a Million Matrices on GPUs Abdelfattah, Haidar, Tomov and Dongarra

The reason is that such software is optimized to handle large sizes of data with embarrassingly
parallel computational kernels such as matrix multiplication (GEMM). In dense linear algebra,
the idea of blocking enables the use of compute-intensive trailing matrix updates that are well-
suited for GPUs [19]. However, when the sizes are very small, the LAPACK-style blocking cannot
be applied, since the blocking sizes will be very small, leading to memory-bound trailing matrix
updates. We need a di↵erent design mindset in order to develop high performance GPU kernels
to handle such type of workloads.

This paper presents highly optimized GPU kernels for batched LU factorization and matrix
inversion. The kernels can handle millions of matrices of sizes up to 32. We show a step-by-
step methodology, where incremental improvements in the kernel design lead to incremental
performance gains. We justify all of our design choices by showing the performance before
and after every incremental improvement. One of the main advantages of our design is the
elimination of the expensive intermediate row interchanges by delaying them to the end of the
kernel, which leads to a much faster kernel that produces the exact same result of a LAPACK-style
LU-factorization and inversion. The performance results show significant speedups against the
vendor-supplied CUBLAS kernels using a Pascal P100 GPU.

2 ddd

Matrix of size 10240 generated with positive � and clustered singular values,
�i=(1, · · · , 1, 1

cond) and where its condition number is equal to 102.

3 Related Work

GPUs are well suited for embarrassingly parallel tasks on large chunks of data, such as matrix
multiplication(GEMM) [13][18]. The nearly optimal performance of GEMM on GPUs allowed the
development of high performance LAPACK algorithms [19][11]. Following a growing interest in
performing matrix computations on large batches of small matrices, an obvious start was to
develop a batched GEMM routine for GPUs. This has already been addressed in literature [7][4],
leading to developments of higher-level batched LAPACK algorithms. For example, Kurzak et
al. [12] introduced batched Cholesky factorization for single precision up to sizes 100 ⇥ 100,
while Dong et al. provided a more generic design [9]. Some contributions also proved the
ability of GPUs to deal with variable size batched workloads [4][3].

Wang et al. [20] introduced FPGA-based parallel LU factorization of large sparse matrices,
where the algorithm is reduced to factorizing many small matrices concurrently. Villa et al. [16]
developed a GPU-based batched LU factorization, which has been used in subsurface transport
simulation, where many chemical and microbiological reactions in a flow path are simulated in
parallel [17]. Batched matrix inversion is also introduced in the context of generating block-
Jacobi preconditioners [6]. The work presented by Haidar et al. [10] provides a batched LU

2

iterations
0 17 34 51 68 85 102 119 136 153 170 187

re
si

du
al

10-20

10-15

10-10

10-5

100

Convergence history for Classic Iterative Refinement
FP32->64 IR
FP16->64 IR
FP16->64 IR (Tensor Cores)

Leveraging Half Precision in HPC on V100

Matrix size
2k 4k 6k 8k10k12k14k16k18k 22k 26k 30k 34k

Tf
lo

p/
s

0
2
4
6
8

10
12
14
16
18
20
22
24

Performance of solving Ax=b
using FP64 or IR with GMRes to achieve FP64 accuracy

FP64 dgesv

Factorization and Inversion of a Million Matrices on GPUs Abdelfattah, Haidar, Tomov and Dongarra

The reason is that such software is optimized to handle large sizes of data with embarrassingly
parallel computational kernels such as matrix multiplication (GEMM). In dense linear algebra,
the idea of blocking enables the use of compute-intensive trailing matrix updates that are well-
suited for GPUs [19]. However, when the sizes are very small, the LAPACK-style blocking cannot
be applied, since the blocking sizes will be very small, leading to memory-bound trailing matrix
updates. We need a di↵erent design mindset in order to develop high performance GPU kernels
to handle such type of workloads.

This paper presents highly optimized GPU kernels for batched LU factorization and matrix
inversion. The kernels can handle millions of matrices of sizes up to 32. We show a step-by-
step methodology, where incremental improvements in the kernel design lead to incremental
performance gains. We justify all of our design choices by showing the performance before
and after every incremental improvement. One of the main advantages of our design is the
elimination of the expensive intermediate row interchanges by delaying them to the end of the
kernel, which leads to a much faster kernel that produces the exact same result of a LAPACK-style
LU-factorization and inversion. The performance results show significant speedups against the
vendor-supplied CUBLAS kernels using a Pascal P100 GPU.

2 ddd

Matrices generated with positive � and clustered distribution of its singular values
�i=(1, · · · , 1, 1

cond) and where its condition number is equal to 102.

3 Related Work

GPUs are well suited for embarrassingly parallel tasks on large chunks of data, such as matrix
multiplication(GEMM) [13][18]. The nearly optimal performance of GEMM on GPUs allowed the
development of high performance LAPACK algorithms [19][11]. Following a growing interest in
performing matrix computations on large batches of small matrices, an obvious start was to
develop a batched GEMM routine for GPUs. This has already been addressed in literature [7][4],
leading to developments of higher-level batched LAPACK algorithms. For example, Kurzak et
al. [12] introduced batched Cholesky factorization for single precision up to sizes 100 ⇥ 100,
while Dong et al. provided a more generic design [9]. Some contributions also proved the
ability of GPUs to deal with variable size batched workloads [4][3].

Wang et al. [20] introduced FPGA-based parallel LU factorization of large sparse matrices,
where the algorithm is reduced to factorizing many small matrices concurrently. Villa et al. [16]
developed a GPU-based batched LU factorization, which has been used in subsurface transport
simulation, where many chemical and microbiological reactions in a flow path are simulated in
parallel [17]. Batched matrix inversion is also introduced in the context of generating block-
Jacobi preconditioners [6]. The work presented by Haidar et al. [10] provides a batched LU

2

• solving Ax = b using FP64 LU

Flops = 2n3/(3 time)
meaning twice higher is twice faster

Leveraging Half Precision in HPC on V100

Matrix size
2k 4k 6k 8k10k12k14k16k18k 22k 26k 30k 34k

Tf
lo

p/
s

0
2
4
6
8

10
12
14
16
18
20
22
24

Performance of solving Ax=b
using FP64 or IR with GMRes to achieve FP64 accuracy

FP64 dgesv
FP32->64 dsgesv

Factorization and Inversion of a Million Matrices on GPUs Abdelfattah, Haidar, Tomov and Dongarra

The reason is that such software is optimized to handle large sizes of data with embarrassingly
parallel computational kernels such as matrix multiplication (GEMM). In dense linear algebra,
the idea of blocking enables the use of compute-intensive trailing matrix updates that are well-
suited for GPUs [19]. However, when the sizes are very small, the LAPACK-style blocking cannot
be applied, since the blocking sizes will be very small, leading to memory-bound trailing matrix
updates. We need a di↵erent design mindset in order to develop high performance GPU kernels
to handle such type of workloads.

This paper presents highly optimized GPU kernels for batched LU factorization and matrix
inversion. The kernels can handle millions of matrices of sizes up to 32. We show a step-by-
step methodology, where incremental improvements in the kernel design lead to incremental
performance gains. We justify all of our design choices by showing the performance before
and after every incremental improvement. One of the main advantages of our design is the
elimination of the expensive intermediate row interchanges by delaying them to the end of the
kernel, which leads to a much faster kernel that produces the exact same result of a LAPACK-style
LU-factorization and inversion. The performance results show significant speedups against the
vendor-supplied CUBLAS kernels using a Pascal P100 GPU.

2 ddd

Matrices generated with positive � and clustered distribution of its singular values
�i=(1, · · · , 1, 1

cond) and where its condition number is equal to 102.

3 Related Work

GPUs are well suited for embarrassingly parallel tasks on large chunks of data, such as matrix
multiplication(GEMM) [13][18]. The nearly optimal performance of GEMM on GPUs allowed the
development of high performance LAPACK algorithms [19][11]. Following a growing interest in
performing matrix computations on large batches of small matrices, an obvious start was to
develop a batched GEMM routine for GPUs. This has already been addressed in literature [7][4],
leading to developments of higher-level batched LAPACK algorithms. For example, Kurzak et
al. [12] introduced batched Cholesky factorization for single precision up to sizes 100 ⇥ 100,
while Dong et al. provided a more generic design [9]. Some contributions also proved the
ability of GPUs to deal with variable size batched workloads [4][3].

Wang et al. [20] introduced FPGA-based parallel LU factorization of large sparse matrices,
where the algorithm is reduced to factorizing many small matrices concurrently. Villa et al. [16]
developed a GPU-based batched LU factorization, which has been used in subsurface transport
simulation, where many chemical and microbiological reactions in a flow path are simulated in
parallel [17]. Batched matrix inversion is also introduced in the context of generating block-
Jacobi preconditioners [6]. The work presented by Haidar et al. [10] provides a batched LU

2

• solving Ax = b using FP64 LU
• solving Ax = b using FP32 LU and

iterative refinement to achieve FP64
accuracy

Flops = 2n3/(3 time)
meaning twice higher is twice faster

Leveraging Half Precision in HPC on V100

Matrix size
2k 4k 6k 8k10k12k14k16k18k 22k 26k 30k 34k

Tf
lo

p/
s

0
2
4
6
8

10
12
14
16
18
20
22
24

Performance of solving Ax=b
using FP64 or IR with GMRes to achieve FP64 accuracy

FP64 dgesv
FP32->64 dsgesv
FP16->64 dhsgesv

Factorization and Inversion of a Million Matrices on GPUs Abdelfattah, Haidar, Tomov and Dongarra

The reason is that such software is optimized to handle large sizes of data with embarrassingly
parallel computational kernels such as matrix multiplication (GEMM). In dense linear algebra,
the idea of blocking enables the use of compute-intensive trailing matrix updates that are well-
suited for GPUs [19]. However, when the sizes are very small, the LAPACK-style blocking cannot
be applied, since the blocking sizes will be very small, leading to memory-bound trailing matrix
updates. We need a di↵erent design mindset in order to develop high performance GPU kernels
to handle such type of workloads.

This paper presents highly optimized GPU kernels for batched LU factorization and matrix
inversion. The kernels can handle millions of matrices of sizes up to 32. We show a step-by-
step methodology, where incremental improvements in the kernel design lead to incremental
performance gains. We justify all of our design choices by showing the performance before
and after every incremental improvement. One of the main advantages of our design is the
elimination of the expensive intermediate row interchanges by delaying them to the end of the
kernel, which leads to a much faster kernel that produces the exact same result of a LAPACK-style
LU-factorization and inversion. The performance results show significant speedups against the
vendor-supplied CUBLAS kernels using a Pascal P100 GPU.

2 ddd

Matrices generated with positive � and clustered distribution of its singular values
�i=(1, · · · , 1, 1

cond) and where its condition number is equal to 102.

3 Related Work

GPUs are well suited for embarrassingly parallel tasks on large chunks of data, such as matrix
multiplication(GEMM) [13][18]. The nearly optimal performance of GEMM on GPUs allowed the
development of high performance LAPACK algorithms [19][11]. Following a growing interest in
performing matrix computations on large batches of small matrices, an obvious start was to
develop a batched GEMM routine for GPUs. This has already been addressed in literature [7][4],
leading to developments of higher-level batched LAPACK algorithms. For example, Kurzak et
al. [12] introduced batched Cholesky factorization for single precision up to sizes 100 ⇥ 100,
while Dong et al. provided a more generic design [9]. Some contributions also proved the
ability of GPUs to deal with variable size batched workloads [4][3].

Wang et al. [20] introduced FPGA-based parallel LU factorization of large sparse matrices,
where the algorithm is reduced to factorizing many small matrices concurrently. Villa et al. [16]
developed a GPU-based batched LU factorization, which has been used in subsurface transport
simulation, where many chemical and microbiological reactions in a flow path are simulated in
parallel [17]. Batched matrix inversion is also introduced in the context of generating block-
Jacobi preconditioners [6]. The work presented by Haidar et al. [10] provides a batched LU

2

• solving Ax = b using FP64 LU
• solving Ax = b using FP32 LU and

iterative refinement to achieve FP64
accuracy

• solving Ax = b using FP16 LU and
iterative refinement to achieve FP64
accuracy

Flops = 2n3/(3 time)
meaning twice higher is twice faster

slow convergence affect
the performance

Leveraging Half Precision in HPC on V100

Matrix size
2k 4k 6k 8k10k12k14k16k18k 22k 26k 30k 34k

Tf
lo

p/
s

0
2
4
6
8

10
12
14
16
18
20
22
24

Performance of solving Ax=b
using FP64 or IR with GMRes to achieve FP64 accuracy

FP64 dgesv
FP32->64 dsgesv
FP16->64 dhsgesv
FP16->64 dshtgesv

Factorization and Inversion of a Million Matrices on GPUs Abdelfattah, Haidar, Tomov and Dongarra

The reason is that such software is optimized to handle large sizes of data with embarrassingly
parallel computational kernels such as matrix multiplication (GEMM). In dense linear algebra,
the idea of blocking enables the use of compute-intensive trailing matrix updates that are well-
suited for GPUs [19]. However, when the sizes are very small, the LAPACK-style blocking cannot
be applied, since the blocking sizes will be very small, leading to memory-bound trailing matrix
updates. We need a di↵erent design mindset in order to develop high performance GPU kernels
to handle such type of workloads.

This paper presents highly optimized GPU kernels for batched LU factorization and matrix
inversion. The kernels can handle millions of matrices of sizes up to 32. We show a step-by-
step methodology, where incremental improvements in the kernel design lead to incremental
performance gains. We justify all of our design choices by showing the performance before
and after every incremental improvement. One of the main advantages of our design is the
elimination of the expensive intermediate row interchanges by delaying them to the end of the
kernel, which leads to a much faster kernel that produces the exact same result of a LAPACK-style
LU-factorization and inversion. The performance results show significant speedups against the
vendor-supplied CUBLAS kernels using a Pascal P100 GPU.

2 ddd

Matrices generated with positive � and clustered distribution of its singular values
�i=(1, · · · , 1, 1

cond) and where its condition number is equal to 102.

3 Related Work

GPUs are well suited for embarrassingly parallel tasks on large chunks of data, such as matrix
multiplication(GEMM) [13][18]. The nearly optimal performance of GEMM on GPUs allowed the
development of high performance LAPACK algorithms [19][11]. Following a growing interest in
performing matrix computations on large batches of small matrices, an obvious start was to
develop a batched GEMM routine for GPUs. This has already been addressed in literature [7][4],
leading to developments of higher-level batched LAPACK algorithms. For example, Kurzak et
al. [12] introduced batched Cholesky factorization for single precision up to sizes 100 ⇥ 100,
while Dong et al. provided a more generic design [9]. Some contributions also proved the
ability of GPUs to deal with variable size batched workloads [4][3].

Wang et al. [20] introduced FPGA-based parallel LU factorization of large sparse matrices,
where the algorithm is reduced to factorizing many small matrices concurrently. Villa et al. [16]
developed a GPU-based batched LU factorization, which has been used in subsurface transport
simulation, where many chemical and microbiological reactions in a flow path are simulated in
parallel [17]. Batched matrix inversion is also introduced in the context of generating block-
Jacobi preconditioners [6]. The work presented by Haidar et al. [10] provides a batched LU

2

• solving Ax = b using FP64 LU
• solving Ax = b using FP32 LU and

iterative refinement to achieve FP64
accuracy

• solving Ax = b using FP16 LU and
iterative refinement to achieve FP64
accuracy

• solving Ax = b using FP16 Tensor Cores
LU and iterative refinement to achieve
FP64 accuracy

Flops = 2n3/(3 time)
meaning twice higher is twice faster

4X

Time (sec)
0 1 2 3 4 5 6 7

A
ve

ra
ge

 p
ow

er
 C

PU
+G

PU
 (W

at
ts

)

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400
420
440
460

5.5

14

2021

Performance
in Tflop/s

Gflops/Watts
Joules

Solving Ax=b on Nvidia V100

FP64 solver dgesv

CPU: 10 cores E5-2650 v3
GPU: Nvidia V100

Leveraging Half Precision in HPC
Power awareness

CPU Intel Xeon E5-2650 v3 (Haswell)
2x10 cores @ 2.30 GHz V100 NVIDIA Volta GPU

80 MP x 64 @ 1.38 GHz

Power is for GPU + CPU + DRAM

Problem generated with an arithmetic distribution of the singular values and positive eigenvalues.

Investigating Half Precision Arithmetic to Accelerate Dense Linear System Solvers ScalA17, November 12–17, 2017, Denver, CO, USA

Matrix size
2k 4k 6k 8k 10k12k14k16k18k 22k 26k 30k 34k

Tf
lo

p/
s

0
1
2
3
4
5
6
7
8
9

10
11
12
13

Performance_rand_dominant_cond_100
FP64 dgesv
FP32->64 dsgesv
FP16->64 dhgesv

ite

ra
tio

ns

0

1

2

3

4

5

6

3
5

3
3

3
3

3
3

3
3

2
4

2
3

2
3

2
4

2
4

3
4

2
3

(a) matrix with diagonal dominant.

Matrix size
2k 4k 6k 8k 10k12k14k16k18k 22k 26k 30k 34k

Tf
lo

p/
s

0

1

2

3

4

5

6

7

8

9

10

11

12
Performance_poev_logrand_cond_100

FP64 dgesv
FP32->64 dsgesv
FP16->64 dhgesv

ite

ra
tio

ns

0

1

2

3

4

5

6

7

8

9

10

3
7

3
7

3
7

3
7

3
7

3
8

3
8

3
8

3
6

3
6

3
9

3
8

(b) matrix with positive l and where si is random number between 1
cond ,1 such that

their logarithms are uniformly distributed.

Matrix size
2k 4k 6k 8k 10k12k14k16k18k 22k 26k 30k 34k

Tf
lo

p/
s

0

1

2

3

4

5

6

7

8

9

10

11

12
Performance_poev_cluster2_cond_100

FP64 dgesv
FP32->64 dsgesv
FP16->64 dhgesv

ite

ra
tio

ns

0

1

2

3

4

5

6

7

8

9

3
6

3
6

3
6

3
7

3
7

3
7

3
8

3
8

3
8

3
8

3
8

3
8

(c) matrix with positive l and with clustered singular values, si=(1, · · · , 1, 1
cond)

Matrix size
2k 4k 6k 8k 10k12k14k16k18k 22k 26k 30k 34k

Tf
lo

p/
s

0

1

2

3

4

5

6

7

8
Performance_svd_cluster2_cond_100

FP64 dgesv
FP32->64 dsgesv
FP16->64 dhgesv

ite

ra
tio

ns

0

94

188

282

376

470

564

658

752

846

313 31
6

41
8

42
1

42
4

43
2

4
36

4
42

4
60

4
90

4
16

5

4
85

0

(d) matrix with clustered singular values, si=(1, · · · , 1, 1
cond)

Matrix size
2k 4k 6k 8k 10k12k14k16k18k 22k 26k 30k 34k

Tf
lo

p/
s

0

1

2

3

4

5

6

7

8

9

10

11

12
Performance_poev_arith_cond_100

FP64 dgesv
FP32->64 dsgesv
FP16->64 dhgesv

ite

ra
tio

ns

0

1

2

3

4

5

6

7

8

9

3
7

3
7

3
6

3
7

3
7

3
8

3
8

3
8

3
8

3
8

3
8

3
8

(e) matrix with positive eigenvalues and arithmetic distribution of its singular values
si = 1� (i�1

n�1) (1�
1

cond).

Matrix size
2k 4k 6k 8k 10k12k14k16k18k 22k 26k 30k 34k

Tf
lo

p/
s

0

1

2

3

4

5

6

7

8
Performance_svd_arith_cond_100

FP64 dgesv
FP32->64 dsgesv
FP16->64 dhgesv

ite

ra
tio

ns

0

22

44

66

88

110

132

154

176

198

220

3
21

4
39

4
72

4
11

8
4

20
0

40 40 40 40 40 40 40

(f) matrix with arithmetic distribution of its singular values si = 1� (i�1
n�1) (1�

1
cond).

Figure 4: Performance in Tflop/s for the three linear solver (dgesv,dsgesv,dhgesv) and the required number of iterations to achieve
FP64 arithmetic solution using either the dsgesv (orange numbers) or the dhgesv (green numbers) solver, for different matrices size
and different type of matrices. Note that cond = 102 for these experiments.

• Power consumption of the FP64 algorithm to
solve Ax=b for a matrix of size 34K, it achieve
5.5 Tflop/s and requires about 2021 joules
providing about 14 Gflops/Watts.

Leveraging Half Precision in HPC
Power awareness

Problem generated with an arithmetic distribution of the singular values and positive eigenvalues.

Investigating Half Precision Arithmetic to Accelerate Dense Linear System Solvers ScalA17, November 12–17, 2017, Denver, CO, USA

Matrix size
2k 4k 6k 8k 10k12k14k16k18k 22k 26k 30k 34k

Tf
lo

p/
s

0
1
2
3
4
5
6
7
8
9

10
11
12
13

Performance_rand_dominant_cond_100
FP64 dgesv
FP32->64 dsgesv
FP16->64 dhgesv

ite

ra
tio

ns

0

1

2

3

4

5

6

3
5

3
3

3
3

3
3

3
3

2
4

2
3

2
3

2
4

2
4

3
4

2
3

(a) matrix with diagonal dominant.

Matrix size
2k 4k 6k 8k 10k12k14k16k18k 22k 26k 30k 34k

Tf
lo

p/
s

0

1

2

3

4

5

6

7

8

9

10

11

12
Performance_poev_logrand_cond_100

FP64 dgesv
FP32->64 dsgesv
FP16->64 dhgesv

ite

ra
tio

ns

0

1

2

3

4

5

6

7

8

9

10

3
7

3
7

3
7

3
7

3
7

3
8

3
8

3
8

3
6

3
6

3
9

3
8

(b) matrix with positive l and where si is random number between 1
cond ,1 such that

their logarithms are uniformly distributed.

Matrix size
2k 4k 6k 8k 10k12k14k16k18k 22k 26k 30k 34k

Tf
lo

p/
s

0

1

2

3

4

5

6

7

8

9

10

11

12
Performance_poev_cluster2_cond_100

FP64 dgesv
FP32->64 dsgesv
FP16->64 dhgesv

ite

ra
tio

ns

0

1

2

3

4

5

6

7

8

9

3
6

3
6

3
6

3
7

3
7

3
7

3
8

3
8

3
8

3
8

3
8

3
8

(c) matrix with positive l and with clustered singular values, si=(1, · · · , 1, 1
cond)

Matrix size
2k 4k 6k 8k 10k12k14k16k18k 22k 26k 30k 34k

Tf
lo

p/
s

0

1

2

3

4

5

6

7

8
Performance_svd_cluster2_cond_100

FP64 dgesv
FP32->64 dsgesv
FP16->64 dhgesv

ite

ra
tio

ns

0

94

188

282

376

470

564

658

752

846

313 31
6

41
8

42
1

42
4

43
2

4
36

4
42

4
60

4
90

4
16

5

4
85

0

(d) matrix with clustered singular values, si=(1, · · · , 1, 1
cond)

Matrix size
2k 4k 6k 8k 10k12k14k16k18k 22k 26k 30k 34k

Tf
lo

p/
s

0

1

2

3

4

5

6

7

8

9

10

11

12
Performance_poev_arith_cond_100

FP64 dgesv
FP32->64 dsgesv
FP16->64 dhgesv

ite

ra
tio

ns

0

1

2

3

4

5

6

7

8

9

3
7

3
7

3
6

3
7

3
7

3
8

3
8

3
8

3
8

3
8

3
8

3
8

(e) matrix with positive eigenvalues and arithmetic distribution of its singular values
si = 1� (i�1

n�1) (1�
1

cond).

Matrix size
2k 4k 6k 8k 10k12k14k16k18k 22k 26k 30k 34k

Tf
lo

p/
s

0

1

2

3

4

5

6

7

8
Performance_svd_arith_cond_100

FP64 dgesv
FP32->64 dsgesv
FP16->64 dhgesv

ite

ra
tio

ns

0

22

44

66

88

110

132

154

176

198

220

3
21

4
39

4
72

4
11

8
4

20
0

40 40 40 40 40 40 40

(f) matrix with arithmetic distribution of its singular values si = 1� (i�1
n�1) (1�

1
cond).

Figure 4: Performance in Tflop/s for the three linear solver (dgesv,dsgesv,dhgesv) and the required number of iterations to achieve
FP64 arithmetic solution using either the dsgesv (orange numbers) or the dhgesv (green numbers) solver, for different matrices size
and different type of matrices. Note that cond = 102 for these experiments.

• Power consumption of the FP64 algorithm to
solve Ax=b for a matrix of size 34K, it achieve
5.5 Tflop/s and requires about 2021 joules
providing about 14 Gflops/Watts.

• Power consumption of the mixed precision
FP32à64 algorithm to solve Ax=b for a
matrix of size 34K, it achieve 10.7 Tflop/s and
requires about 1041 joules providing about
30 Gflops/Watts.

Mixed precision techniques can provide
a large gain in energy efficiency

Time (sec)
0 1 2 3 4 5 6 7

A
ve

ra
ge

 p
ow

er
 C

PU
+G

PU
 (W

at
ts

)

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400
420
440
460

5.5

14

2021

Performance
in Tflop/s

Gflops/Watts
Joules

10.7

27

1041

Solving Ax=b on Nvidia V100

FP64 solver dgesv
FP32 --> 64 solver dsgesv

CPU: 10 cores E5-2650 v3
GPU: Nvidia V100

Iterative refinement

Leveraging Half Precision in HPC
Power awareness

Problem generated with an arithmetic distribution of the singular values and positive eigenvalues.

Investigating Half Precision Arithmetic to Accelerate Dense Linear System Solvers ScalA17, November 12–17, 2017, Denver, CO, USA

Matrix size
2k 4k 6k 8k 10k12k14k16k18k 22k 26k 30k 34k

Tf
lo

p/
s

0
1
2
3
4
5
6
7
8
9

10
11
12
13

Performance_rand_dominant_cond_100
FP64 dgesv
FP32->64 dsgesv
FP16->64 dhgesv

ite

ra
tio

ns

0

1

2

3

4

5

6

3
5

3
3

3
3

3
3

3
3

2
4

2
3

2
3

2
4

2
4

3
4

2
3

(a) matrix with diagonal dominant.

Matrix size
2k 4k 6k 8k 10k12k14k16k18k 22k 26k 30k 34k

Tf
lo

p/
s

0

1

2

3

4

5

6

7

8

9

10

11

12
Performance_poev_logrand_cond_100

FP64 dgesv
FP32->64 dsgesv
FP16->64 dhgesv

ite

ra
tio

ns

0

1

2

3

4

5

6

7

8

9

10

3
7

3
7

3
7

3
7

3
7

3
8

3
8

3
8

3
6

3
6

3
9

3
8

(b) matrix with positive l and where si is random number between 1
cond ,1 such that

their logarithms are uniformly distributed.

Matrix size
2k 4k 6k 8k 10k12k14k16k18k 22k 26k 30k 34k

Tf
lo

p/
s

0

1

2

3

4

5

6

7

8

9

10

11

12
Performance_poev_cluster2_cond_100

FP64 dgesv
FP32->64 dsgesv
FP16->64 dhgesv

ite

ra
tio

ns

0

1

2

3

4

5

6

7

8

9

3
6

3
6

3
6

3
7

3
7

3
7

3
8

3
8

3
8

3
8

3
8

3
8

(c) matrix with positive l and with clustered singular values, si=(1, · · · , 1, 1
cond)

Matrix size
2k 4k 6k 8k 10k12k14k16k18k 22k 26k 30k 34k

Tf
lo

p/
s

0

1

2

3

4

5

6

7

8
Performance_svd_cluster2_cond_100

FP64 dgesv
FP32->64 dsgesv
FP16->64 dhgesv

ite

ra
tio

ns

0

94

188

282

376

470

564

658

752

846

313 31
6

41
8

42
1

42
4

43
2

4
36

4
42

4
60

4
90

4
16

5

4
85

0

(d) matrix with clustered singular values, si=(1, · · · , 1, 1
cond)

Matrix size
2k 4k 6k 8k 10k12k14k16k18k 22k 26k 30k 34k

Tf
lo

p/
s

0

1

2

3

4

5

6

7

8

9

10

11

12
Performance_poev_arith_cond_100

FP64 dgesv
FP32->64 dsgesv
FP16->64 dhgesv

ite

ra
tio

ns

0

1

2

3

4

5

6

7

8

9

3
7

3
7

3
6

3
7

3
7

3
8

3
8

3
8

3
8

3
8

3
8

3
8

(e) matrix with positive eigenvalues and arithmetic distribution of its singular values
si = 1� (i�1

n�1) (1�
1

cond).

Matrix size
2k 4k 6k 8k 10k12k14k16k18k 22k 26k 30k 34k

Tf
lo

p/
s

0

1

2

3

4

5

6

7

8
Performance_svd_arith_cond_100

FP64 dgesv
FP32->64 dsgesv
FP16->64 dhgesv

ite

ra
tio

ns

0

22

44

66

88

110

132

154

176

198

220

3
21

4
39

4
72

4
11

8
4

20
0

40 40 40 40 40 40 40

(f) matrix with arithmetic distribution of its singular values si = 1� (i�1
n�1) (1�

1
cond).

Figure 4: Performance in Tflop/s for the three linear solver (dgesv,dsgesv,dhgesv) and the required number of iterations to achieve
FP64 arithmetic solution using either the dsgesv (orange numbers) or the dhgesv (green numbers) solver, for different matrices size
and different type of matrices. Note that cond = 102 for these experiments.

• Power consumption of the FP64 algorithm to
solve Ax=b for a matrix of size 34K, it achieve
5.5 Tflop/s and requires about 2021 joules
providing about 14 Gflops/Watts.

• Power consumption of the mixed precision
FP32à64 algorithm to solve Ax=b for a
matrix of size 34K, it achieve 10.7 Tflop/s and
requires about 1041 joules providing about
30 Gflops/Watts.

• Power consumption of the mixed precision
FP16à64 algorithm to solve Ax=b for a
matrix of size 34K, it achieve 16.8 Tflop/s and
requires about 609 joules providing about
48 Gflops/Watts.

Mixed precision techniques can provide
a large gain in energy efficiency

Time (sec)
0 1 2 3 4 5 6 7

A
ve

ra
ge

 p
ow

er
 C

PU
+G

PU
 (W

at
ts

)

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400
420
440
460

5.5

14

2021

Performance
in Tflop/s

Gflops/Watts
Joules

10.7

27

1041

16.8

48

609

Solving Ax=b on Nvidia V100

FP64 solver dgesv
FP32 --> 64 solver dsgesv
FP16 --> 64 solver dhgesv

CPU: 10 cores E5-2650 v3
GPU: Nvidia V100

Leveraging Half Precision in HPC
Power awareness

Problem generated with an arithmetic distribution of the singular values and positive eigenvalues.

Investigating Half Precision Arithmetic to Accelerate Dense Linear System Solvers ScalA17, November 12–17, 2017, Denver, CO, USA

Matrix size
2k 4k 6k 8k 10k12k14k16k18k 22k 26k 30k 34k

Tf
lo

p/
s

0
1
2
3
4
5
6
7
8
9

10
11
12
13

Performance_rand_dominant_cond_100
FP64 dgesv
FP32->64 dsgesv
FP16->64 dhgesv

ite

ra
tio

ns

0

1

2

3

4

5

6

3
5

3
3

3
3

3
3

3
3

2
4

2
3

2
3

2
4

2
4

3
4

2
3

(a) matrix with diagonal dominant.

Matrix size
2k 4k 6k 8k 10k12k14k16k18k 22k 26k 30k 34k

Tf
lo

p/
s

0

1

2

3

4

5

6

7

8

9

10

11

12
Performance_poev_logrand_cond_100

FP64 dgesv
FP32->64 dsgesv
FP16->64 dhgesv

ite

ra
tio

ns

0

1

2

3

4

5

6

7

8

9

10

3
7

3
7

3
7

3
7

3
7

3
8

3
8

3
8

3
6

3
6

3
9

3
8

(b) matrix with positive l and where si is random number between 1
cond ,1 such that

their logarithms are uniformly distributed.

Matrix size
2k 4k 6k 8k 10k12k14k16k18k 22k 26k 30k 34k

Tf
lo

p/
s

0

1

2

3

4

5

6

7

8

9

10

11

12
Performance_poev_cluster2_cond_100

FP64 dgesv
FP32->64 dsgesv
FP16->64 dhgesv

ite

ra
tio

ns

0

1

2

3

4

5

6

7

8

9

3
6

3
6

3
6

3
7

3
7

3
7

3
8

3
8

3
8

3
8

3
8

3
8

(c) matrix with positive l and with clustered singular values, si=(1, · · · , 1, 1
cond)

Matrix size
2k 4k 6k 8k 10k12k14k16k18k 22k 26k 30k 34k

Tf
lo

p/
s

0

1

2

3

4

5

6

7

8
Performance_svd_cluster2_cond_100

FP64 dgesv
FP32->64 dsgesv
FP16->64 dhgesv

ite

ra
tio

ns

0

94

188

282

376

470

564

658

752

846

313 31
6

41
8

42
1

42
4

43
2

4
36

4
42

4
60

4
90

4
16

5

4
85

0

(d) matrix with clustered singular values, si=(1, · · · , 1, 1
cond)

Matrix size
2k 4k 6k 8k 10k12k14k16k18k 22k 26k 30k 34k

Tf
lo

p/
s

0

1

2

3

4

5

6

7

8

9

10

11

12
Performance_poev_arith_cond_100

FP64 dgesv
FP32->64 dsgesv
FP16->64 dhgesv

ite

ra
tio

ns

0

1

2

3

4

5

6

7

8

9

3
7

3
7

3
6

3
7

3
7

3
8

3
8

3
8

3
8

3
8

3
8

3
8

(e) matrix with positive eigenvalues and arithmetic distribution of its singular values
si = 1� (i�1

n�1) (1�
1

cond).

Matrix size
2k 4k 6k 8k 10k12k14k16k18k 22k 26k 30k 34k

Tf
lo

p/
s

0

1

2

3

4

5

6

7

8
Performance_svd_arith_cond_100

FP64 dgesv
FP32->64 dsgesv
FP16->64 dhgesv

ite

ra
tio

ns

0

22

44

66

88

110

132

154

176

198

220

3
21

4
39

4
72

4
11

8
4

20
0

40 40 40 40 40 40 40

(f) matrix with arithmetic distribution of its singular values si = 1� (i�1
n�1) (1�

1
cond).

Figure 4: Performance in Tflop/s for the three linear solver (dgesv,dsgesv,dhgesv) and the required number of iterations to achieve
FP64 arithmetic solution using either the dsgesv (orange numbers) or the dhgesv (green numbers) solver, for different matrices size
and different type of matrices. Note that cond = 102 for these experiments.

• Power consumption of the FP64 algorithm to
solve Ax=b for a matrix of size 34K, it achieve
5.5 Tflop/s and requires about 2021 joules
providing about 14 Gflops/Watts.

• Power consumption of the mixed precision
FP32à64 algorithm to solve Ax=b for a
matrix of size 34K, it achieve 10.7 Tflop/s and
requires about 1041 joules providing about
30 Gflops/Watts.

• Power consumption of the mixed precision
FP16à64 algorithm to solve Ax=b for a
matrix of size 34K, it achieve 16.8 Tflop/s and
requires about 609 joules providing about
48 Gflops/Watts.

• Power consumption of the mixed precision
FP16à64 TC algorithm using Tensor Cores
to solve Ax=b for a matrix of size 34K, it
achieve 24 Tflop/s and requires about 470
joules providing about 74 Gflops/Watts.

Mixed precision techniques can provide
a large gain in energy efficiency

Time (sec)
0 1 2 3 4 5 6 7

A
ve

ra
ge

 p
ow

er
 C

PU
+G

PU
 (W

at
ts

)

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400
420
440
460

5.5

14

2021

Performance
in Tflop/s

Gflops/Watts
Joules

10.7

27

1041

16.8

48

609

24.0

74

470

Solving Ax=b on Nvidia V100

FP64 solver dgesv
FP32 --> 64 solver dsgesv
FP16 --> 64 solver dhgesv
FP16 --> 64 solver dhgesv (TC)

CPU: 10 cores E5-2650 v3
GPU: Nvidia V100

FP16-TC reach
74 Gflops/Watt

Critical Issues at Peta & Exascale for
Algorithm and Software Design

• Synchronization-reducing algorithms
§ Break Fork-Join model

• Communication-reducing algorithms
§ Use methods which have lower bound on communication

• Mixed precision methods
§ 2x speed of ops and 2x speed for data movement
§ Now we have 16 bit floating point as well

• Autotuning
§ Today’s machines are too complicated, build “smarts” into software to adapt to

the hardware

• Fault resilient algorithms
§ Implement algorithms that can recover from failures/bit flips

• Reproducibility of results
§ Today we can’t guarantee this. We understand the issues, but some of our

“colleagues” have a hard time with this.
87

Collaborators / Software / Support

u PLASMA
http://icl.cs.utk.edu/plasma/

u MAGMA
http://icl.cs.utk.edu/magma/

u Quark (RT for Shared Memory)
• http://icl.cs.utk.edu/quark/

u PaRSEC(Parallel Runtime Scheduling
and Execution Control)

• http://icl.cs.utk.edu/parsec/

88

u Collaborating partners
University of Tennessee, Knoxville
University of California, Berkeley
University of Colorado, Denver

MAGMA PLASMA

